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Introduction.

The following considerations are an attempt to discuss the 
ancient and time honoured metaphysical concepts of continuity, 
determinism, and reality with the help of a simple, almost trivial 

example. Theoretical physics has, by its own efforts, come to a 
point where it had to abandon a great deal of traditional philo
sophical ideas and to replace them by new ones. But there are 
still leading physicists, amongst them Einstein (1), de Broglie 
(2), and Schrödinger (3), who have not accepted the new way 
of thinking. Therefore, a careful analysis of the philosophical 
situation in physics seems not to be superfluous. Einstein him
self has formulated on several occasions his objections against 
the current interpretation of quantum mechanics not in obscure 
philosophical terms, but with the help of simple models. The 
same method will be followed here; in fact, the model discussed 
is actually due to Einstein (4). It makes it possible to illustrate 
abstract philosophical ideas by elementary geometrical con
siderations; these provide of course no direct answer to the meta
physical problems, but reduce them to clearly distinct alternatives 
and help thus to clarify the logical situation.

Part I. General Considerations.

1. Continuity.

I maintain that the mathematical concept of a point in a 
continuum has no direct physical significance. It has, for instance, 
no meaning to say the value of the coordinate x of a mass-point, 
or of the centre of mass of an extended body, has a value repre
sented in a given unit by a real number (like x — |/ 2 inch, or 
x = 7t cm.).
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Modern physics has achieved its greatest successes by ap
plying the methodological principle that concepts which refer to 
distinctions beyond possible experience have no physical meaning 
and ought to be eliminated. This principle was certainly operative 
in many instances since Newton’s lime. The most glaringly suc
cessful cases are Einstein’s foundation of special relativity based 
on the rejection of the concept of aether as a substance absolutely 
at rest, and Heisenberg’s foundation of quantum mechanics based 
on the elimination of orbital radii and frequencies of electronic 
structures in atoms. I think that this principle should be applied 
also to the idea of physical continuity. Now consider, for instance, 
a statement like x = ncm.\ if ?in is the approximation of n by 
its first n decimals, then the differences 7tn — nm are, for suf
ficiently large n and in, smaller than the accuracy of any possible 
measurement (even if it is conceded that this accuracy may be 
indefinitely improved in the course of time). Hence, statements 
of this kind should be eliminated.

That does not mean that I reject the mathematical concept 
of real number. It is indispensible for applying analysis. The 
situation demands a description of haziness of physical quantities 
with the help of real numbers.

The proper tool for this is the concept of probability. It can 
be assumed that sentences like the following have a meaning: 
The probability for the value of a physical quantity to be in a 
given interval (represented by two real numbers) has a certain 
value (again a real number). Or, with other words, for any 
quantity x there exists a probability density P(.r).

This attitude is generally accepted in quantum mechanics. 
But it has actually a more fundamental significance and is only indi
rectly connected to the special features characteristic of quantum 
mechanics. It ought to be applied to classical mechanics as well.

2. Determinism.

Classical mechanics has its roots, since Newton’s time, in 
astronomy where the prediction of constellations was its main 
aim. Thus, the deterministic character of the mechanical laws 
is stressed in the traditional presentations. When mechanics is 
applied to micro-phenomena, it is, however, necessary to analyse 
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the meaning of the term determinism a little deeper. The mechan
ical laws have the property that a precisely given initial state 
(configuration and velocities) determines at any time a sharp 
final state. There are two possibilities: Either a small change of 
the parameters in the initial state (small compared with the total 
range) produces only small changes of the final values for all 
times; then the orbit defined by the initial conditions is stable. 
Or this is not the case, the linal deviations increase in time beyond 
any limit; then the orbit is instable.

In astronomy, much work has been done to prove the stability 
of the planetary system. For our purpose, the results of these 
investigations are irrelevant. What matters is that there exist 
simple mechanical systems of a type familiar in atomic physics 
(kinetic theory of gases) for which all orbits are instable. These 
systems display therefore only what I should call weak determ
inism; the future state can be predicted only if the initial state 
is defined absolutely sharply, in the sense of the mathematical 
concept of a point in a continuum; the slightest initial deviation 
produces an ever increasing vagueness of the final state. Thus, 
for systems of this kind, there is a close connection between the 
problems of continuity and determinism. If the point in a con
tinuum has no physical meaning, it is impossible to maintain 
that systems of this type behave in a deterministically predictable 
way. Hence, for a wide class of mechanical systems, the traditional 
form of (classical) mechanics ought to be replaced by a statistical 
method which uses right from the beginning the notion of prob
ability: There exists, for any coordinate x, velocity v, and any 
instant, a probability density P(x, v, t).

The simplest example of this type of systems is the model, 
suggested by Einstein with a very different intention, namely, to 
demonstrate the incompleteness of quantum mechanics (a ques
tion to which I shall return presently). It is the model of a 
one-dimensional one-particle gas and consists of a mass-point 
moving in a straight line (coordinate x) up and down between 
two points (x = 0 and x = I) where it is elastically reflected1. 
In a diagramme, the motion is represented by a zig-zag line

1 If the assumption of an extensionless mass-point and perfect elasticity seems 
to be too unrealistic, one may take the centre of mass of a finite body running 
against high and steep potential walls at x = 0 and x = I.
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>

inside the strip O < x < I with alternating constant inclinations 
± v0, where v0 is the initial velocity. By taking successive images 
of this figure at the boundary lines of the strip, the diagramme 
Fig. 1 is obtained which is symmetric at vertical lines x = kl 
(A = 0, ± 1, ± 2, . . . .) and has the period 2 I. The zig-zag 
motion is therefore equivalent to two sets of parallel, synchronized 
straight line motion. It is obvious that x(t) is, for any t, determ
ined by .r0 = ,r(0) and v0.

But, if x’o, v0 are changed by zlx0, dz?0, the diagramme of 
Fig. 2 is obtained, which illustrates that d.r increases propor
tionally to t, zl x = ±tAv0. After the time tc = llAv0, the variation 
of x is larger than the whole range I of x. Hence, the system is
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perfectly instable and behaves, for t > tc, in an indeterministic 
manner.

Though this is perfectly trivial, I have never seen it pointed out1.

1 For an unbounded straight line motion, the question of stability has no 
meaning as there is no range (like I in the Einstein model) with which to com
pare Zlx(f). The usual considerations on mechanical determinism miss this 
essential point of a final range.

3. Reality.

The question what we mean by the expression “physical 
reality’’ is closely connected with the previous considerations on 
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continuity and determinism. Einstein, in the paper quoted (4), 
describes “the programme that, until the introduction of quantum 
mechanics, was unquestionably accepted for the development of 
physical thinking” in the following way (translated from the 
original German): “Everything is to be reduced to conceptual 
objects situated in space-time and to strict relations which hold 
for these objects. In this description, nothing appears which 
refers to empirical knowledge about these objects. A spatial 
position (relative to the co-ordinate system used) is attributed 
to, say, the moon at any definite time, quite independently of 
the question whether observations of this position are made or 
not. This kind of description is meant if one speaks of the physical 
description of a “real external world” Einstein then 
discusses the question whether quantum mechanics leads to a 
description of the behaviour of macro-bodies, which corresponds 
to this notion of reality, and his answer is no. He considers the 
model of a one-dimensional one-particle gas (discussed above) 
and compares the classical motion with fairly sharp initial 
position and velocity with a special solution of the Schrödinger 
equation

w = Aeiat sin bx = ~ Ael(at + bx) — — Aei(at~bx) (1) 
2 z 2 z ’

(a and b being properly chosen constants); this represents a 
state where the momentum has either of two opposite equal 
values and the probability of position is, for sufficiently high 
momentum, constant apart from small periodic variations. He 
continues (translated): “For a macro-system we are sure that it 
is at any time in a ‘real state’ which is correctly described with 
good approximation by classical mechanics. The individual 
macro-system of the kind considered by us has therefore at any 
time an almost sharply defined coordinate (of its centre of mass)— 
at least if averaged over a small interval of time—and an almost 
sharply defined momentum (defined also in regard to sign). 
None of these results can be obtained from the ^-function. It 
contains only such statements which refer to a statistical ensemble 
of the kind considered”. And a few lines later he concludes: 
“Quantum mechanics describes ensembles of systems, not indi
vidual systems. The description with the help of a ^-function is
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thus an incomplete description of a single system, not a descrip
tion of its ‘real state’.”

This consideration, as it stands, is not conclusive, as the 
function ip chosen by Einstein is a very special solution of the 
wave equation, not adapted to the initial conditions and therefore 
not suited to illuminate the question whether quantum mechanics 
is able to describe the individual macro-body in a “realistic” 
manner—like classical mechanics—or can tackle only statistical 
ensembles. This question will be treated in some detail in the 
second part of this paper. Here another point must be discussed, 
which is implicitly contained in Einstein’s publication and ob
viously foremost in his mind1.

1 I have to thank Professor W. Pauli for giving me, in some letters, an ex
planation of Einstein’s ideas, obtained in oral discussions at Princeton, and his 
own comments.

In the previous sections, it has been shown that no physical 
meaning can be attributed to a sharp value of a co-ordinate 
and that therefore the description of a position in Einstein’s 
model should be given in a hazy but realistic manner through 
a probability density F(x); that, further, the laws of classical 
mechanics should be formulated not in terms of orbits, but of a 
time-dependent probability density P(a?, v, f). If this is done, 
classical mechanics is actually not dealing with a single system, 
but with a statistical ensemble, and Einstein’s criticism of quan
tum mechanics, quoted above, taken literally, fails as it would 
apply in the same way to the classical theory. However, what 
Einstein really means, is evident from another sentence of his 
article which reads (translated): “The fact that, for the macro
system considered, not every function ip satisfying the Schrödinger 
equation corresponds approximately to a description of a real 
phenomenon in the sense of classical mechanics, is particularly 
obvious by considering a ^-function which is formed by the super
position of two functions of the type (1) whose frequencies 
(energies) are essentially different. For, to such a superposition, 
there is no corresponding ‘real case’ of classical mechanics (still, 
however, a statistical ensemble of such ‘real cases’ according to 
Born’s statistical interpretation).”

Classical mechanics, formulated statistically as it ought to be, 
is still a “description of reality” according to Einstein’s definition, 
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as one can think the single, sharp state as existing (though not 
observe it with the accuracy demanded by the mathematical 
concept of sharpness) and then obtain the physical vagueness by 
applying the ordinary laws of probability. For instance, one can 
think of a particle in a straight line being at x± and then the 
physical situation “we know that it is near oq” by a probability 
density p(x— xT) (where the function p(x) is different from 
zero only near x — 0). If we only know that the particle is either 
near aq or near x2, the probability density will be

P(x’) = a±p{x — aq) + u2 p(x — x2), ax + a2 = 1, (2) 

according to the ordinary rides of probability calculus.
In quantum mechanics the situation, however, is different. 

If tp(x— x±) is the Schrödinger function describing a particle 
being near aq, the probability density is p(x — aq) = I g>(x — aq)|2. 
If we know that the particle is either near aq or near x2, the 
situation is described by the Schrödinger function V’(æ) = 
c1ç?(æ — aq) + c2p(x — x2) and the resultant probability is

1 Einstein discusses in this connection the ideas of de Broglie, Bohm, 
Schrödinger a. o. who tried, in different ways, to interpret the formalism of 
quantum mechanics in terms of classical concepts, but he rejects these attempts 
as unsatisfactory.

P(æ) = I y(x) I2 = cpp(x — Xj) + a2 p(x — aq) + J(x), | 

°1 — I C1 |2> a2 = I C2 |2> (3)

where the additional term

J(æ) = c1c^<pÇx — x1)(pt\x — x2) + c^c2(p:\x — x1)(pÇx — x2) (4) 

represents the “interference of probabilities”. It has no classical 
analogue; even if it is practically negligible for t — 0, it may be
come appreciable for certain x’-values at later instances.

The existence of this interference phenomenon excludes the 
possibility to think of the particle as having a definite position 
(and velocity) at any instant and to connect these positions in 
imagination to an orbit, and this is the reason why Einstein 
declares quantum mechanics to be incomplete1. He insists that, 
at least for macro-bodies, a theory cannot be regarded as satis
factory unless it conforms with his idea of reality.
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This is a philosophical creed which can be neither proved 
nor disproved by physical arguments. But what can be done is 
this : one can formulate another concept of physical reality which 
takes account of the actual existence of the interference pheno
menon in the atomistic region and goes over into the traditional 
one (that accepted by Einstein) for macro-bodies. This I have 
done in a systematic, but rather abstract way, at another place (5). 
I shall not repeat these considerations here, but illustrate them 
only with the help of the model used above, a particle oscillating 
on a line between two elastically reflecting boundaries.

The main point is that the physicist has not to do with what 
can be thought of (or imagined), but what can be observed. From 
this standpoint a state of a system at a time t, when no observ
ation is made, is not an object of consideration. But as soon as 
an observation is made, the situation found has to be regarded 
as the final state of the phenomenon defined by a previously 
observed initial state and, if future observations are envisaged, 
also as the initial state of the further development. This “reduc
tion of probability’’ is not characteristic of quantum mechan
ics, but has also to be applied to classical mechanics if it 
is formulated in terms of probability: Any observation for 
checking a predicted probability density “destroys” it and pro
duces a new one which has to serve as initial state for further 
predictions.

But from this standpoint the interference phenomenon looses 
much of its paradoxial character. For the one-dimensional model, 
an actual observation determines not the complex amplitudes 
ci = l/aie1“1, c2 = \/a2eia2, but only the probabilities (relative 
frequencies) ar = | cx |2, a2 — | c2|2; the phases ax, a2 remain 
entirely unknown and undetermined, and the interference term 
vanishes if averaged over the phase difference ax — a2. For more 
complicated systems (like the optical interferometers), the dis
tribution in the final state may of course show interference fringes, 
which classical theory cannot explain; but this appears only 
paradoxial from the traditional (Einstein’s) standpoint where a 
non-observed intermediate state is declared to be just as real as 
an actually observed final state.

The situation can be illustrated by a detailed discussion of 
our model. This will be done in the second part of this paper.
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Part II. Mathematical Considerations.

The model which will now be investigated in more detail 
seems to be the simplest mechanical system with a finite range 
of the variables (co-ordinate, velocity) for which the exact solution 
can be found. The Hamiltonian has essentially only a kinetic 
part; the potential energy due to reflection at the boundaries can 
be replaced by certain periodicity conditions, and the equations 
of motion then can be solved, in the classical and quantum treat
ment as well, with the help of Kelvin’s method of images. The 
resulting formulae are simple and well suited for a discussion 
of several important problems, as the transition from the initial 
individualistic to the final statistical description, the characteristic 
distinctions of classical and quantum treatment, the reduction of 
probability through observation, and the interference of proba
bilities.

1. Classical treatment of the one-particle 
one-dimensional gas.

The orbit of a particle in Einstein’s model, starting at / = 0 
from the point x — xQ with the velocity v = v0, is analytically
given by

1 X = ‘21k — æo— Vot, 12k-l<t<t2k\
| æ — — 2lk x0 -p uot, < t < ^2/c+i ’/ (1-1)

where
= M-.i'o, k = ± ± ...................

(1.2)

It is convenient (as already indicated in Fig. 1) to replace the 
one-particle system by a periodic system, consisting of an infinite 
number of synchronized particles, by dropping the conditions 
t > 0, Q < x < I (silently assumed in (1.1)). This procedure will 
be denoted by the short name “periodic continuation”. According 
to the programme explained in Part I, the “deterministic” de
scription (1.1), (1.2) shall be replaced by a statistical one, with 
the help of a probability density, P(x, v, f). We have to do with 
a case of statistical mechanics where the system is not in statistical
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equilibrium, but develops in time from a given initial distribution 
P(x, v, 0). The only condition for P(x, v, t) is that which ex
presses the conservation of probability; it follows from Lion-
ville’s theorem,

d P
^+[P,H]=0, (1.3)

where H(x,p) is the Hamiltonian as function of coordinate and 
momentum and

[P,H^9P0H_dpaH
ox op op ox (1-4)

the Poisson bracket.
H consists of the kinetic energy p2/2m, and the potential 

energy representing the reflective power of the walls. As this force 
is assumed to be infinitely strong, it can be replaced by certain 
periodicity conditions which will be derived presently. With 
H = p2l2m and p = mu, (1.4) reduces to

(1.5)

The periodicity conditions follow from the consideration that the 
solution must have the same value at a given point x (in 0 < x < V) 
after each reflection; for instance, after one reflection at x = 0, 
one has

P(x, v, f) = P (x, — v, t — (1.6a)

and, after two reflections at x = 0 and x = I,

P(x, v, t) = P \x, v, t + (1.6 b)

The general solution of (1.5) is

P(x, v, t) = f(x— vt, v), (1-7)

where f(x, v) is an arbitrary function of two arguments, defined 
for all values — °° < x, v < °o, which represents the initial state

P{x, v, 0) = f(x, v). (1-8)



14 Nr. 2

The condition (1.6 b) leads to

f(x — vt, v) = f(x — vt —-2 I, v)

and (1.6 a) to
f(x — vt, v) = /(— x + vt, — v).

The first of these conditions says that f(x, v) is periodic in x 
with the period 21,

f(x, v) = f(x + 21, p); (1.9a)

the second, that it is symmetric for the inversion

f(x, v) = f(—x, — v). (1.9b)

These two periodicity conditions define the periodic continuation 
of P(x, v, t).

The case of a particle having for t = 0 almost a fixed position x0 
and fixed velocity v0 is of particular interest. In order to describe 
it in a simple way we introduce a function <p(x, v) restricted to 
a narrow domain around x — 0, v = 0; assuming <p to be norm
alized, the average of a function q(x, v) is defined by

/ OC I SO
q — \ \q(x,v)(p(x,v)dxdv, \ yp(x, v) dxdv = 1, (1-10)

‘■0 *- —oc * o —x

and we postulate

x = 0, p = 0, x2 = Oq, p2 = Tq, (1.11)

where cr0 « I, To « v0.

Then, the function

oc

f(x,v) =^{cp(2kl + x — .r0, v — v0) + <p(2 kl — x — x0,— v — p0)) (1.12)
k = — <x>

has all properties requested: it satisfies (1.9a) and (1.9b) and it 
has, in the interval 0 < x < /, only one sharp maximum corre-
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sponding to the, first term for k = 0 (as the maximum of the 
second term, at — a?0 + 2 kl, is outside the interval for all k = 0, 
il, i 2, . . . .).

Hence, the probability density is, according to (1.7),

P(æ, v, Z)
0©

= + x —æ0 —uf, v — p0) + 9?(2Å7 — x — a:0 + vt, v — Vq)};
k = — oo

(M3)

it is properly normalized, for

,«x !» Z»00 [/»(2k + 1)Z —x0—(t>0 + rf)t >(2k — l)l — x0 — (v0 4- rf}t
\ \P(æ, p, f) dxdp \ <fy\\<P(£,'n) dg — \<p(£,n)d!;
Jç) J—oo k = — oo •’—oo L^2 kl — xjf— (v0 + rj)t 12 kl — x0 — (v0 + rj) t

oo X

= \ dr/\ d £(p(£, rj) = 1,
*-—oo —-Q

(1.13a)

in virtue of (1.10).
If cp(x, p) is chosen as a Dirac ô-function, i. e. cr0 = 0, r0 = 0, 

this function (1.13) reduces to zero except for the points which 
satisfy the equations (1.1), (1-2). But this limiting case does not 
correspond to a real physical situation. We have to consider (To 
and r0 as finite quantities.

By integrating (1.13) over v one obtains the spatial distri
bution

'•00
P(x, /) = \P(x, v, f) dv

J--00

00 (.°°

m(2 A7 + x — .t0 — (p0+ ??)/, rf)+(p(2kl— x— x0—(po + ^M)}^, 
k = — 00 J—-co

(1.14)

and, by integrating (1.13) over x from 0 to /, the velocity distri
bution

i«00 <*  [«(2k + l)Z— x„ — vt p(2/c—l)Zx0 + vt I

P(p, 0 = \P(x, p, f) = v — Vo^dZ — yyt^ — v — v^dq. (1.15)
*— oo k = — oo 1 »2 kl — x0 — vt v2kl — x0 + vt )

These two formulae are the analytical expression of the fact that 
at each reflection the velocity changes its sign. The distribution 
of the absolute value of the velocity is obviously nothing but the 
probability that the velocity is either p or —p, hence

0 = P(y, I) + P(_—v, ()• (1-16)
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This quantity is easily found from (1.15) to be independent of 
time, as should be expected. For the two parts in (1.16) con
tribute terms in the sum (1.15) which can be combined to inte
grals from — oo to oo :

OC
P(|y|, o = P(| v\) = ( {99(1, P —Z7O) + ?(£, —v — u0)}d£. (1.17) 

J--X

As an example for which all calculations can be performed in 
detail, one can consider 99 (x, v) as a Gauss function in both 
arguments. If we put

1 X2 u2
(p(x, p) = - ---------e 2ct°2 2t°’, (1-18)

2 71 ÖQ To

the equations (1.11) are satisfied. (1.13) becomes

, ( (t> — i?0)a oc 1 (2kZ + x—x0 —vZ)1

P (X, v, t) = —------ < e ye~2
2 n o-0 t0 I k oo

and (1.14)

(1.19)
(0 + i>0)2 00 1 (2kl— x — x0 — vt)2}

+ e 2^- e~ 2^
k = —00 J

where
^(0 = |/tf? + Toî2. (1.21)

If now the averages of x, x2, and (Ax)2 = (x— x)2 are formed 
with the distribution (1.20) one finds for x exactly the expres
sions (1.1), (1.2) and further

(Ax)2 = cr(t)2. (1-22)

Hence, the width of the distribution increases with time. It becomes 
equal to the whole range I of x at a critical instant

(1.23)
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If <t0« I, this is approximately tc ~ l/r0, the value used in Part I. 
For small t0, the epoch tc is very large but always finite.

It can now be shown that, for t oo, P(x, t) becomes con
stant, independent of x and t. If t is large, one has cr(/) —rof, 
and (1.20) reduces to

P(x, f)

if one puts---------v0 — rj, then to an increment JÀ' = 1 there

corresponds Ar] = 2l/t which, for t oo, tends to zero. Hence, 
the sum goes over into an integral

(1.24)

This is the properly normalized “geometrical” probability for 
finding the particle anywhere in the interval of length /.

However, the distribution for £ -> oc is not that of an ideal 
gas, as the velocity distribution is different. One obtains from 
(1.17) and (1.18)

1 I _ (p~po8) _ (" + ^o)2
p(H)~^ i/ole 2T°2 +e 2T°2 

To f 2 71 I
(1-25)

that means two Gauss distributions with the mean velocities dz f’o> 
but not a Maxwell distribution.

The result of this consideration is therefore that a motion 
which starts as that of a practically individualistic particle, in 
the course of time goes over into a state where the position 
becomes completely indetermined while the magnitude of the 
velocity remains unchanged, its direction indetermined.

The question how the model has to be modified so that the 
final state is an ideal gas will not be investigated here in detail. 
It is obvious that a mechanism for the exchange of velocities 
between several mobile objects is needed. I presume that it suf
fices to replace one of the elastic boundaries by a model of a 
thermal reservoir (a heavy body with a Maxwell energy distri
bution) which exchanges energy and momentum with the particle 
at each collision.

Dan. Mat.Fys.Medd. 30, no.2. 2
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2. Quantum mechanics of the one-dimensional 
one-particle gas.

To treat the same problem with quantum mechanics one has
to solve the time-dependent Schrödinger equation for the wave
function y>(x, f),

h2 d2ip . dtp 
2m dx2^ 11 dt

1 De Broglie has actually treated the three-dimensional case.

= 0 (2.1)

with the boundary conditions

y>(0, /) = 0, tp(l, Q = 0. (2.2)

There are two standard methods, that of d’Alembert and that of 
Fourier. The d’Alembertian solution is, in the present case, pre
ferable as it leads to results easily comparable with those of the 
classical treatment. The transformation in a Fourier series can 
then be easily obtained.

De Broglie has given, in one of his books (6), a solution1 
of (2.1) without boundaries, which corresponds to arbitrary 
initial values /’(.r); namely

^(•r, 0 (2-3)

This can be readily confirmed by direct calculation (substituting 
into (2.1) and demonstrating that tp(x, Q -> f(x) for t -> 0). Then, 
following Darwin, he choses for /’(.r) the function 

which represents an harmonic wave with momentum mu0, 
modulated by a Gauss function with a crest al x0 and width u0 |/2. 
The probability for location | f(x) |2 is normalized,

(/'|(æ)|2 t/.r = 1, (2.5)
J--- oc
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and the expectation values of coordinate, momentum, and their 
mean square deviations are

(2.6a)

h2
(2.6b)

If we introduce the uncertainty of the velocity

r„ = |/(J O2 = l '(^/>)2 = (2.7)

we have the Heisenberg uncertainty relation

]/(d x)2 • (d p)2 = m o-o^o = 2 ' (2-8)

If (2.4) is substituted in (2.3) and the integration performed, 
one obtains after some reduction 

where

(2.10)

(2-9)

y(x, t) is the normalized probability amplitude for a group of 
waves with a crest initially at .r0 moving with the velocity u0 
(from left to right). Then, y(—x, f) corresponds to a group of 
waves with a crest initially at — x0 and moving with the velocity

2*  
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— v0 (from right to left). For inspection of (2.9) shows that a 
change of sign of x is equivalent to a change of signs of x0 and z?0.

Applying the image method, we construct the function

00

^(x,/) = 2? {y(2H + x, /)—y(2Jtf —x,0}; (2.11)
k = —oo

it is obviously periodic in x with period 21 and vanishes for 
x = 0 and x = I. If t -> 0, one has approximately cr(/) -> cr0, 
s(Z) 1, and

V/(x,0) =
(exp 2kl + x — x0

2 cr0
inw0
~7i (2Â7 + x — x0)2

— exp
(2.12)

This can be written

¥'O,0) = 2’ {f(2kl + x)-f(2kl-x)}, (2.13)
k = — oc

where /(x) is the function defined by (2.4). Hence, the initial 
state consists in two groups of plane waves travelling to the right 
and left, both modulated by Gauss functions of width <r0, and 
group crests at x0 + 2kl and — x0 + 2kl (Ä = 0, ± 1, ± 2, • • •), 
respectively. Inside the interval 0 < x < /, these waves are 
equivalent to one wave with a crest initially at x0, which is 
repeatedly reflected at the boundaries x = 0 and x = /. Hence 
the solution describes, for small a0, a repeatedly reflected single 
particle with slightly uncertain initial position.

The probability of location is

P(x, I) = W*  =Z Ê {v(.2k'l + x,t)
k = — oo k1 = — oo

— y»(2kl— x, t)}[ip*(2  kl + x,t)—ip*(2kl — x, /)}.
(2.14)

Now, each term ip (2 kl + æ, 0 corresponds, in Fig. 1, to a line 
ascending from left to right (+ line), each term ip (2kl— x, t) to 
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a line ascending from right to left (— line). Accordingly, the four 
products obtained by multiplying out the bracket in (2.14) can be 
classified into three types and the total probability split into 
three parts:

P(æ, Z) = Pc(x, Z) + Pf(æ, 0 + Pr(x, Z). (2.15)

For k = k', the terms y(2ÀZ + x, Z) ip*(2kl  + x, f) and y(2kl 
— x, t) y)*(2kl  — x, Z) represent the superposition of the Gauss 
function of a 
contribute to

/V-r.O = ttyAsZ A' ■
(Z) V 2 ji k _ —Q0

which is identical with the probability (1.20) derived from the 
classical theory.

The remaining terms for k — k', namely —y(2kl + x, Z) 
y*(2kl  — x, Z) and — y(2kl — x, Z) y>*(2ÄZ  + x, t), correspond 
each to the intersection point of a (+ line) with an equally 
numbered (—line); all these are (cf. Fig. 1) on the boundary 
x — 0. It is obvious that the other boundary x = Z, where 
k' = k + 1, contributes terms of the same type and similar 
magnitude. Collecting all these terms, we obtain

,(2.16)

(+ line) with itself and a (—line) with itself; they 
(2.15)

P,(x, Z)
__ ~2_ y L- læ1 + (2M-xo-vooq 
u (Z) V2jtk^-Lx\

cos
æ [ gp 

a0T0Z [o-(Z)2 (2 kl — x0 — vof) — 2kl + ,r0

-97^[d-*) 2 + (2M-æo-VoOs] Z —X
e zoit) cos------

gpTpZ -77^ (2Å7 — æ0 — PO Z) — 2kl + x() (7(Z)

These terms represent interference effects due to the super
position of an incident with a reflected wave near one of the 
boundaries. The fringes, described by the cos-terms, are restricted, 
by the Gauss functions, to a neighbourhood of the boundary of 
width u(Z); if o^« I, these regions of interference remain narrow 
for a long time (Z « Zc). The remaining terms, all of the type 

(2.17)
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k =1= k', correspond either to the superposition of two different 
(+ lines) or two different (—lines) or to intersection points of 
a (+ line) and a (—line); outside the region 0<rr< /. Ifa(0«/, 
their contribution to the probability, Pr(æ, f), is small and can 
be neglected for t « tc.

The essential differences between the classical and quantum 
treatment are now clearly seen to be of two different kinds; there 
arc, firstly, the interference effects near the boundaries, repre
sented by Pit and, secondly, the Heisenberg uncertainty relation 
which connects o0 and r0(= /i/2 mcr0) and thus prohibits simul
taneously sharp initial position and velocity. Both effects are 
appreciable only for atomistic particles and negligible for macro
bodies (in large).

It is now clear that whenever the interference terms Pf can 

be neglected, namelv when cr0 « I and r0 = —— « n0, or, when
2 m gt0

2 mu0 « <r0«/,

then P(x, t) approaches, for t oo, the constant value 1// as in 
(1-24).

We have now to investigate the relation of the solution for 
an individual particle given above and the solution based on 
eigenstates (which Einstein uses for his critical considerations). 
For this purpose we expand the function ^(.r, t) in a Fourier 
series; as it is antisymmetric we can write

with

^(.r,/) = y An(t) sin^x,
n = I ‘

(2.18)

(2.19)

By substituting (2.18) in the differential equation (2.1), one sees 
that An (f) satisfies the equation

hi dAn(t)
dt (2.20)
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and as E — hid/dt is the energy operator, one has

where
-4„(0 =

lnhn\2 1
E" = \~T) 2m

(2.21)

(2.22)

are the eigenvalues of the energy. Therefore it suffices to cal
culate the constants

Substituting (2.13) one has

9

/

hence
n 7i x (2-24)dx,2 i,ac

ft» sin
i t)—00

which shows that the Fourier coefficient of ^(x, 0) in the interval 
0 < x < / is the Fourier transform of /(x) in — oc < x < oc 
taken at the points nTi/l of the reciprocal space.

It follows now readily that W(x, f) is normalized for all t; 
one has

Introducing for /(x) in (2.24) the expression (2.4), one obtains
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The absolute value of the momentum in the state n is, according 
to (2.22),

Pn j/ 2 mEn
7th n
~~r

hence, with ctoto = h/2 m, (2.26) can also be written

Assume u0 > 0; since in (2.18) n = 1, 2, . . . . , pn is positive.
Hence only the exponent of the second term can approach zero, 
namely for

Pn n?p0, nmax (2.29)

For this n one has

~ Î j (<?0 V 2 7t)
inivoxo/h

(2.30)

and the expansion (2.18) reduces, for small r0, to the leading
term :

^(.r, t) ~ z'Jy ((jol^^y/’e
inwoxo/h mvoxsin ——

/i
(2.31)

This is the solution of the Schrödinger equation used by Ein
stein (cf. Part I, (1)) to demonstrate the incompleteness of quan
tum mechanics. However, as the preceding considerations show, 
it is only an approximation; the correct solution is the wave 
packet with the coefficients (2.26) or (2.28), and this is com
pletely equivalent to the d’Alembertian solution (2.11) which 
exhibits the fact that, for a restricted time (/ < Zc), the motion 
is properly approximated by the classical, orbital or individualistic 
description. The quantum formula (2.31) and the classical for
mula (1.1) are therefore bridged by a continuous transition, and 
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there is no paradoxial situation for macro-bodies which Ein
stein believes to exist.

Einstein’s objections against quantum mechanics based on 
the interference of probabilities can also be illuminated by this 
model. The first point is that one must not add phase factors of 
the form eiak to the terms of the sum (2.11), because then the 
boundary (periodicity) conditions would be violated. All the dif
ferent terms in the sum are in phase; only a common phase 
factor eia can be added to the whole sum. But this cancels in 
the probability expression (2.14). Hence, the interference term 
given in (2.17) is genuine and cannot be destroyed by averaging 
over phases; these interferences between incident and reflected 
wave are of the same type as those in certain interferometric 
optical experiments (standing waves).

But one can now consider the case, discussed at the the end 
of Part I, where the initial distribution has two sharp maxima, 
one at xlf the other at x2; i. e. one knows only that the particle 
is either near xt or near x2. The solution xP(x, /) is then a linear 
combination of the two single functions with complex factors; 
but the relative phase of these is indetermined, one has to average 
over it and thus no interference phenomenon results from this 
situation. This must be so; for simple ignorance where a particle 
is at t = 0 cannot produce a physical interference phenomenon. 
Observable interference can be obtained only by feeding in par
ticles from one source at two places by a physical instrument 
which divides one de Broglie wave into two “coherent” beams in 
a similar way as half-silvered plates and similar devices in optics. 
As soon as an attempt is made to decide on which of the two 
feeding branches the particle appears, there is a new initial state 
and no interference is observable.

3. Summary.

It is misleading to compare quantum mechanics with de
terministically formulated classical mechanics; instead, one 
should first reformulate the classical theory, even for a single 
particle, in an indeterministic, statistical manner. Then some of 
the distinctions between the two theories disappear, others emerge 
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with great clarity. Amongst the first is the feature of quantum 
mechanics, that each measurement interrupts the automatic flow 
of events and introduces new initial conditions (so-called “reduc
tion of probability’’); this is true just as well for a statistically 
formulated classical theory. The essential quantum effects are of 
two kinds: the reciprocal relation between the maximum of 
sharpness for coordinate and velocity in the initial and con
sequently in any later state (uncertainty relations), and the inter
ference of probabilities whenever two (coherent) branches of the 
probability function overlap. For macro-bodies both these effects 
can be made small in the beginning and then remain small for 
a long time; during this period the individualistic description of 
traditional classical mechanics is a good approximation. But 
there is always a critical moment tc where this ceases to be true 
and the quasi-individual is transforming itself into a genuine 
statistical ensemble.
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